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Machine Learning Project

• Machine Learning has a number of phases

• The phases can be overlapping and/or iterative

1. Look at the big picture.

2. Get the data.

3. Discover and visualize the data to gain insights.

4. Prepare the data for Machine Learning algorithms.

5. Select a model and train it.

6. Fine-tune your model.

7. Present your solution.

8. Launch, monitor, and maintain your system.

• A detailed checklist is given on ML Management Checklist (PDF)

• Remember always adapt the order and the checklist to your needs
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http://micl-easj.dk/Machine%20Learning/Noter%20and%20Books/ML%20Management%20Checklist.pdf


Machine Learning: The big picture and data

• It is about understanding business and the data!

1. The context

2. Frame the problem

3. Select performance measure

4. Setup workspace

5. Get the data in hand

6. Explore the data tables

7. Create a test set

8. Visual graphs and correlations

9. Experiment with attribute combinations
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The Context: Housing prices

• California median housing price for a block group

• Block group: unit population of 600-3.000 people

• Data size app. 20.000 
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Prepare Data for Machine Learning Algorithms

Its about making data ready to be used by Machine Learning algorithms

1. Data Cleaning: Handle missing feature values -> How to fix it?

2. Handle Text and Categorical Attributes: Convert values to numbers so they can handled by ML algorithms

3. Feature Scaling: Scale features to the same order of magnitude: E,g intervals [-1..1] or [0..1] or distribution around median

4. Custom Transformers: Custom transformer classes on data can be defined to be used in e.g. transformations pipelines 

5. Transformation Pipelines: Feature from Scikit-Learn, that automatically e.g. can apply the transformers
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Create clean data sets

Revert to a clean training set and separate features and labels
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Data Cleaning

• Problem: Some feature values are missing – e.g. some registrations of "total_bedrooms” are missing. 

In general learning algorithms assume that feature values are not missing

Solutions:

1. Drop feature instances (rows) with missing values - e.g. those with missing values for "total_bedrooms” 

2. Drop the whole attribute with missing values - e.g. the "total_bedrooms” feature

3. Replace the missing feature values with proper values – e.g. zero, mean or median values 

• How to apply strategy (median) on whole data set? Use SimpleImputer from sklearn.impute

• Check out the code (cell 55) in the Housing project !
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Data Cleaning

• Problem: Assume there are many features (>10). It is a tedious job manually handling missing values.

Solutions:

1. Use SimpleImputer from sklearn.impute

2. Apply a strategy (median) on whole data set?

3. Drop non-numerical values

4. Fit and transform the data set

Later one can add the transformed non-numerical values
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from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy="median")

housing_num = housing.drop("ocean_proximity", axis=1)

imputer.fit(housing_num)

X = imputer.transform(housing_num)



Text and Categorical Attributes

Problem: Some features are discrete text/categorical attributes and must be converted to a (continuous) number equivalent.

Solution: Convert each category to a discrete number

Category: E.g. the “ocean_proximity” feature has values like: 'OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'

Converted into five numbers:  0, 1, 2, 3, 4

Problem: ML-algorithm assumes nearby numbers have similarity. But 0 (‘OCEAN’) and 4(‘NEAR OCEAN’) have similarity.

Don’t worry there is a solution: Use OneHotEncoder from sklearn.preprocessing
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Text and Categorical Attributes, OneHotEncoder

Encoding: Each discrete feature is converted to a feature vector with a dimension equal number of values in range

Category: E.g. the “ocean_proximity” feature has values like: 'OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN‘

Converted into a table (matrix with 5 columns and ‘one hot bit’ in each row)

array([[1., 0., 0., 0., 0.],       

[1., 0., 0., 0., 0.],       

[0., 0., 0., 0., 1.],       

………….....,       

[0., 1., 0., 0., 0.],       

[1., 0., 0., 0., 0.],       

[0., 0., 0., 1., 0.]]) 

Problem: Too many zeros in the matrix, Vasting memory!

Solution: Use OneHotEncoder with fit.transform creates utomatically a sparse matrix with position numbers and the value.

Sparse Matrix explained
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https://en.wikipedia.org/wiki/Sparse_matrix


Feature Scaling

Problem: Learning algorithms is assumed to perform better if numerical attributes in on the same scale 

Solution: There are 2 common ways to get all attributes to have the same scale: 

1. Min-max scaling: 

Values are scaled to the range 0..1. NewValue = Value/(MaximumValue - MinimumValue).

Scikit-Learn provides the transformer MinMaxScaler.

Affected by outliers. E.G. one wrong house price (100) will place all other houses in a range 0-0.15 

2. Standardization scaling:

Values scaled to a unit variance distribution with a mean around 0. 

NewValue = (Value-Mean)/StandardDeviation. Typical interval [-3..3] holds 99% of values

Scikit-Learn provides the transformer StandardScaler

Less affected by outliers. 
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Custom Transformers 

Problem: Custom transformations on data may be needed – e.g. for providing calculated features:

housing["rooms_per_household"] = housing["total_rooms"]/housing["households"] 

housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"] 

housing["population_per_household"]=housing["population"]/housing["households"] 

Solution: To be performed automatically in a pipeline – use base classes

from sklearn.base import BaseEstimator, TransformerMixin

Constructed class - e.g. CombinedAttributesAdder()- must support methods fit() and transform()
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Transformation Pipelines

Problem: Applying transformers sequentially on feature data in the right order

Solution: Apply pipelining features from Scikit-Learn

Steps in Python – e.g.:

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import StandardScaler

num_pipeline = Pipeline([        

('imputer', SimpleImputer(strategy="median")),

('attribs_adder', CombinedAttributesAdder()), 

('std_scaler', StandardScaler()),    ])

housing_num_tr = num_pipeline.fit_transform(housing_num)
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Re-combining attributes 

Problem: I may be necessary to re-combine feature attributes 

Solution: Apply column transforming features from Scikit-Learn

Steps in Python – e.g.:

from sklearn.compose import ColumnTransformer

num_attribs = list(housing_num) 

cat_attribs = ["ocean_proximity"]

full_pipeline = ColumnTransformer([        

("num", num_pipeline, num_attribs),        

("cat", OneHotEncoder(), cat_attribs),    ])

housing_prepared = full_pipeline.fit_transform(housing) 
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Re-combining attributes 

Problem: I may be necessary to re-combine feature attributes 

Solution: Apply column transforming features from Scikit-Learn

Steps in Python – e.g.:
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Exercise

• It is time for discussion, coding a standard regression in Jupyter

• Also we will investigate the housing project !!

• Regression Performance

• Linear Regression Standard

• Housing Ch. 2 No. 1

• Housing Ch. 2 No. 2

• Look at details, but don’t loose the overview 

• Just follow the ”right” track and you find the gold
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http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/Regression%20Performance.docx
http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/Linear%20Regression%20Standard.pdf
http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/Housing%20No.%201.pdf
http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/Housing%20No.%202.pdf

