Machine Learning — Preparing data

Michael Claudius, Associate Professor, Roskilde
Jens Peter Andersen, Assistant Professor, Roskilde

02.09.2020

Zealand Sjeellands Erhvervsakademi

Machine Learning Project

* Machine Learning has a number of phases
« The phases can be overlapping and/or iterative

Look at the big picture.

Get the data.

Discover and visualize the data to gain insights.
Prepare the data for Machine Learning algorithms.
Select a model and train it.

Fine-tune your model.

Present your solution.

Launch, monitor, and maintain your system.

©NOoOORWDNRE

« A detailed checklist is given on ML Management Checklist (PDF)

« Remember always adapt the order and the checklist to your needs

Zealand

http://micl-easj.dk/Machine%20Learning/Noter%20and%20Books/ML%20Management%20Checklist.pdf

Machine Learning: The big picture and data

« Itis about understanding business and the data!

The context

Frame the problem

Select performance measure

Setup workspace

Get the data in hand

Explore the data tables

Create a test set

Visual graphs and correlations
Experiment with attribute combinations

© 0N ORAWDNE

Zealand

The Context: Housing prices

« California median housing price for a block group

* Block group: unit population of 600-3.000 people

« Data size app. 20.000

4213

404{ = *

38 1

Latitude

36

34 1

Population

—124 -122 ~120
Longitude

-118

I

$306k

r$258k

F$209k

r$160k

F$112k

- $63k

$15k

edian House Value

=

Figure 2-1. California housing prices

Zealand

Prepare Data for Machine Learning Algorithms

Its about making data ready to be used by Machine Learning algorithms

Data Cleaning: Handle missing feature values -> How to fix it?

Handle Text and Categorical Attributes: Convert values to numbers so they can handled by ML algorithms

Feature Scaling: Scale features to the same order of magnitude: E,g intervals [-1..1] or [0..1] or distribution around median
Custom Transformers: Custom transformer classes on data can be defined to be used in e.g. transformations pipelines
Transformation Pipelines: Feature from Scikit-Learn, that automatically e.g. can apply the transformers

akowbhE

Zealand

Create clean data sets

Revert to a clean training set and separate features and labels

housing = strat_train_set.drop("median_house value", axis=1)
housing_labels = strat_train_set["median_house value"].copy()

Zealand

Data Cleaning

 Problem: Some feature values are missing — e.g. some registrations of "total _bedrooms” are missing.
In general learning algorithms assume that feature values are not missing

Solutions:

1. Drop feature instances (rows) with missing values - e.g. those with missing values for "total bedrooms’
2. Drop the whole attribute with missing values - e.g. the "total _bedrooms” feature

3. Replace the missing feature values with proper values — e.g. zero, mean or median values

H

housing.dropna(subset=["total bedrooms"]) # option 1
housing.drop("total bedrooms", axis=1) # option 2
median = housing["total bedrooms"].median() # option 3
housing["total bedrooms"].fillna(median, inplace=True)

* How to apply strategy (median) on whole data set? Use Simplelmputer from sklearn.impute

* Check out the code (cell 55) in the Housing project !

Zealand

Data Cleaning

Problem: Assume there are many features (>10). It is a tedious job manually handling missing values.

Solutions:

1.

2.
3.
4

Use Simplelmputer from sklearn.impute
Apply a strategy (median) on whole data set?
Drop non-numerical values

Fit and transform the data set

sklearn.impute Simplelmputer
imputer = Simplelmputer(strategy="median")
housing_num = housing.drop("ocean_proximity", axis=1)
imputer.fit(housing_num)
X = imputer.transform(housing_num)

Later one can add the transformed non-numerical values

Zealand

Text and Categorical Attributes

Problem: Some features are discrete text/categorical attributes and must be converted to a (continuous) number equivalent.
Solution: Convert each category to a discrete number
Category: E.g. the “ocean_proximity” feature has values like: 'OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'

from import OrdinalEncoder

ordinal_encoder = OrdinalEncoder()

housing cat_encoded = ordinal_encoder.fit_transform(housing cat)
housing_cat_encoded[:10]

array([[@.], [0.],[4.],[1.1,[0.],[1.],[0.],[1.1,[0.], [0.]])

Converted into five numbers: 0, 1, 2, 3, 4
Problem: ML-algorithm assumes nearby numbers have similarity. But 0 ((OCEAN’) and 4('NEAR OCEAN’) have similarity.

Don’t worry there is a solution: Use OneHotEncoder from sklearn.preprocessing ©

Zealand

Text and Categorical Attributes, OneHotEncoder

Encoding: Each discrete feature is converted to a feature vector with a dimension equal number of values in range
Category: E.g. the “ocean_proximity” feature has values like: 'OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY", 'NEAR OCEAN‘
Converted into a table (matrix with 5 columns and ‘one hot bit’ in each row)

array([[1., 0., 0., 0., 0.],
[1.,0.,0.0.,0.],
[0.,0.,0.,,0.,11],
[0.,1.,0.,,0.,0.],
[1.,0.,0.,0.,0.],
[0.,0.,0.,1.,0.]D

Problem: Too many zeros in the matrix, Vasting memory!
Solution: Use OneHotEncoder with fit.transform creates utomatically a sparse matrix with position numbers and the value.
Sparse Matrix explained

from import OneHotEncoder
cat_encoder = OneHotEncoder()

housing _cat_1lhot = cat_encoder.fit_transform(housing cat)
housing cat_1lhot

Zealand LY

https://en.wikipedia.org/wiki/Sparse_matrix

Feature Scaling

Problem: Learning algorithms is assumed to perform better if numerical attributes in on the same scale
Solution: There are 2 common ways to get all attributes to have the same scale:

1. Min-max scaling:
Values are scaled to the range 0..1. NewValue = Value/(MaximumValue - MinimumValue).

Scikit-Learn provides the transformer MinMaxScaler.
Affected by outliers. E.G. one wrong house price (100) will place all other houses in a range 0-0.15

2. Standardization scaling:
Values scaled to a unit variance distribution with a mean around 0.

NewValue = (Value-Mean)/StandardDeviation. Typical interval [-3..3] holds 99% of values

Scikit-Learn provides the transformer StandardScaler S(z; — H>2
Less affected by outliers. o= fN

0 = population standard deviation
N = the size of the population
L = each value from the population

K = the population mean

Zealand

11

Custom Transformers

Problem: Custom transformations on data may be needed — e.g. for providing calculated features:
housing["rooms per household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms per room"] = housing["total_bedrooms"]/housing["total_:ooms"]
housing["population per household"]=housing["population"]/housing["households"]

Solution: To be performed automatically in a pipeline — use base classes

from sklearn.base import BaseEstimator, TransformerMixin

Constructed class - e.g. CombinedAttributesAdder () - must support methods £it () and transform()

Zealand 12

Transformation Pipelines

Problem: Applying transformers sequentially on feature data in the right order
Solution: Apply pipelining features from Scikit-Learn
Steps in Python — e.g.:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num pipeline = Pipeline ([
('imputer', SimpleImputer (strategy="median")),
('attribs _adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()), 1)

housing num tr = num pipeline.fit transform(housing num)

Zealand

13

Re-combining attributes

Problem: | may be necessary to re-combine feature attributes

Solution: Apply column transforming features from Scikit-Learn

Steps in Python — e.g.:
from sklearn.compose import ColumnTransformer
num attribs = list (housing num)
cat attribs = ["ocean proximity"]

full pipeline = ColumnTransformer ([
("num", num pipeline, num attribs),

("cat", OneHotEncoder (), cat attribs), 1)

housing prepared = full pipeline.fit transform(housing)

Zealand

14

Re-combining attributes

Problem: | may be necessary to re-combine feature attributes

Solution: Apply column transforming features from Scikit-Learn

Steps in Python — e.g.:
from sklearn.compose import ColumnTransformer
num attribs = list (housing num)
cat attribs = ["ocean proximity"]

full pipeline = ColumnTransformer ([
("num", num pipeline, num attribs),

("cat", OneHotEncoder (), cat attribs), 1)

housing prepared = full pipeline.fit transform(housing)

Zealand

15

Exercise

« Itistime for discussion, coding a standard regression in Jupyter
» Also we will investigate the housing project !!

* Regression Performance

« Linear Regression Standard
 Housing Ch. 2 No. 1
 Housing Ch. 2 No. 2

* Look at details, but don’t loose the overview @
« Just follow the "right” track and you find the gold

Zealand

16

http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/Regression%20Performance.docx
http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/Linear%20Regression%20Standard.pdf
http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/Housing%20No.%201.pdf
http://micl-easj.dk/Machine%20Learning/Opgaver%20Alm/Housing%20No.%202.pdf

